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Magnetic spin-lattice relaxation in nuclear quadrupole 
resonance: the I,I # 0 case 

James Chepin and Joseph H Ross, Jr 
Department ofPhysics,Texas A&M University, College Station, TX77843-4242. USA 
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Abdract. We give solutions for spin-lattice relaxation in NOR due to magnetic interactions, 
generalized for non-axial crystal fieldswith q # 0. We find analyticexpressions for I = f and 
give numerical solutions for I = 3, Z and 4. We find that the relaxation curves change 
considerably with q ,  Specificresultsarederivedfor relaxationdue toFermicontactinmetals 
andotherelectronic hyperfineinteractions. We alsodesaibechangesinduced by the addition 
of a magnetic field, indicating fields at which standard NMR results break down. 

1. Introduction 

Spin-lattice relaxation in magnetic resonance offers an excellent probe of dynamical 
effects in solids, as well as electronic charge carriers accessed via the hyperfine inter- 
actions. Relaxation times in nuclear quadrupole resonance (NQR) can be utilised in a 
similar way as NMR, and these measurements can have great technological importance, 

' for instance in the characterization of polycrystalline metals [l], incommensurate die- 
lectric [?.] and anisotropic metals 131, including the high-temperature superconductors 
[GI. For non-axial fields in NQR. however, the energy eigenstates are not identical with 
magnetic spin states, and the rate equation problem has remained largely unsolved. 

The pure quadrupole-Hamiltonian can be written [7] 

X Q  = (hvQ/6)[3I:  - I ( I  + 1) + (7 /2) (I t2  + Z-')] (1) 
where spin matrices are represented along the principal axis directions. Here we have 
hvQ = 3e2qQ/[21(21 - l)], and the electric field gradients (EFG'S) are contained in eq 
and 7, defined as eq = V,,, and 1) = (V, - Vyy)/Vr, .  Conventionally, V,, has the largest 
magnitude, and Vu and Vyy are chosen so that 0 < 7 e 1. This is not a necessary 
assumption in what follows and 7 can assume any value in our results, as can be 
convenient for treating 90" axis rotations. However, axial symmetry always implies 

We consider magnetic relaxation by weak fluctuating magnetic fields. The nuclear 
7 = 0. 

spin coupling to these fields will be written 

XM = m i ,  + pi, + yIy  (4 
where a, p and y characterize the field strength and anisotropy. We are therefore 
assuming that electric quadrupole fluctuations can be neglected, which will be true, for 
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instance, in metals at low temperatures. Calculations of quadrupole relaxation [&lo] 
have not been extended to 7 # 0 NQR. 

While the relaxation problem outlined above requires a numerical solution for spins 
I > 8, we find analytic results for 1 = 4. We will now describe the general methods, 
followed in section 3 by solutions for I = 8. Section 4 details results for specific types of 
relaxation. We give numerical solutions for spins 1 > 4 in section 5, which can be used 
to determine the exact behaviour for systems dominated by Fermi contact relaxation. 
Finally, in section 6 we discuss the behaviour of spin-lattice relaxation with the addition 
of a magnetic field. 
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2. Methods 

If we define n,as the difference between the population of the ith level anditsequilibrium 
value, the rate of change of populations is given by a master equation 

dn,/dt = W,p,  - n, W, 
I f !  I * (  

where 

Wij = ( W h )  I(ilxM li)12. (4) 
Differences in W,, and W,; due to the lattice temperature are accounted for as usual [7]  
by including equilibrium populations in ni. Note that the Andrew-Tunstall Ill] result 
for NMR, Wm,,,-] = W ( l +  nz)(I - m + 1) .  cannor be used here (this form holds for 
cylindricalsymmetryonly,apoint that hasnot always beenmade clear in the literature). 
Expression of this problem in terms of fictitious-spin4 operators [12,13] is also difficult 
since energy states in the present case are not I ,  eigenstates. In general, the 1, and 1, 
matrix elements change with 7, and we must keep the 1, terms in NQR. 

For classical fluctuating fields, the rates (4) should be modified to include only the 
spectral density weighted at the transition frequency [7] .  In what follows we assume that 
the spectral density is independent of the transition frequency (correlation time larger 
than 1/tjL). This is most appropriate for the high-temperature regime, above the T ,  
minimum temperature. The numerical method described below can be generalized, 
though, to include the lower-temperature weak-collision regime. (For electron hyperfine 
interactions in metals, spectral densities will typically be constant at all temperatures; a 
modified rate expression appropriate for electron hyperfine coupling isdiscussed below.) 

States i and j are eigenstates of the quadrupole Hamiltonian, (1); for 7 = 0 these are 
eigenstates of I,, and the resulting spin-lattice recovery curves have been determined 
for all half-integer spins by MacLaughlin er a! [8].  For the more general case q # 0, we 
have utilized the symbolicprogrammingsystem, Mathemarica, to find analytic solutions 
for I = 4 and numerical solutions for other spins. 

A convenient representation for the master equations (3) is in matrix form 

dnldt = A .  n ( 5 )  
where A y  = W, - E Wi,adj is the (21 + 1) x (21 + 1) relaxation matrix. The solution to 
(5) is a multi-exponential spin-lattice relaxation curve, with exponents given by the 
eigenvalues of A, and coefficients determined from the initial experimental preparation 
(e.g. saturation of a specified transition). The multiexponential relaxation is homo- 
geneousand the result ofnon-uniformly spaced levelsthat cannot achieve acommon spin 
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temperature. A standard method [8, 14,151 has been to define population differences 
between adjacent levels in place of n and to rewrite equation (5) accordingly. For q # 0 
NQR, A is not a sparse matrix, and this procedure becomes non-trivial. We therefore 
keep the level populations themselves as the quantities of interest. In this case, the 
eigensystem of A includes one vector with all equal elements and zero eigenvalue, which 
is the unchanging total population (always zero in the high-temperature approximation 
for the traceless Hamiltonian (1)). 

3. Exact solutions forZ = 9 

We find that for I = #the normalized eigenstates for the Hamiltonian (1) can be written 

Yl ={-ia, -b,ib,a} ( 6 4  

Y2 = {ia, -b, -ib, U }  (6b) 

Y3 = {ib, a, ia, b} (64 

Y4 = {-ib, a, -ia, b} (6b) 

where i = a, and a and b are given by: 

U = [(9 + 3q2)’/’ - 3]’/’/(2V/3) 

b = [(9 + 3 ~ ’ ) ” ~  + 3]’/ ’/(2d/3). 

The states (6) are in the I ,  basis, in which the m = %,4, -1 and # states are {l, O,O, 0}, 
{O, l,O,O},{O,O, l,O}and{0,0,0, l},respectively.StatesY, andY2haveenergyei en 

Other linear combinations of the degenerate states can be chosen, however we find that 
the states (6) diagonalize the perturbation (Z), and therefore are most appropriate. 

The relaxation matrix A can be determined from the spin-state eigensystem (6) 
and the perturbation (2). We find that only one of the four eigenmodes of A produces 
population changes observable in NQR. In the energy state basis (Y,, Y2, Y3, Y4} (as 
opposed to the 2, basis used above), the observable NQR mode is in all cases 
{1,1, -1, -l}, and thus removes population from the degenerate states (Y3, Y,) and 
adds population to the degenerate states (Y,, Y2). The spin-lattice relaxation is 
single-exponential, described by the curve exp(-pr), where p is the eigenvalue 
corresponding to the mode described above. We find 

value -hvo(9 + 3q2)’i2/6, and states Y3 and Y4 have eigenvalue +hv0(9 + 3q 2 ) lfi / 6- . 

p =  ~ ~ ’ 2 ~ ’ / ( 3 + ~ ’ ) + ~ ~ ( 3 + q ) ~ / [ 2 ( 3 + ~ ~ ) ] + y ~ ( 3 - ~ ) ~ / [ 2 ( 3 + ~ ~ ) ] .  (8) 

Note that there are no cross terms in (8). so that correlated fluctuations do not 
modify the results. (We have verified the latter only for a, p and y having the same 
phase, as would be expected for nonmagnetic material with time-reversal symmetry.) 
Correlation of the fields CY, /3 and y could correspond to fluctuations whose principal 
axes differ from the EFG principal axes. Fluctuations on any axis can therefore be 
treated for I = $ by taking components (CY, p and y) resolved into the EFG principal 
axis system and inserting these components into (8). 
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4. Specific relaxation effects 

We now demonstrate the application of these results to specific cases, including 
hyperfine interactions in metals. 
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4.1. Classical isotropic fluctuations 

The relaxation rate (8) simplifies greatly when isotropic magnetic fluctuations are the 
dominant relaxation process, so that CY = 6 = y. The Hamiltonian (2) can be regarded 
in this case as ( I  H,%), where HI, is a local field due, for instance, to the untruncated 
dipolar interaction. The rate (8) then becomes p = 3a2, independent of q .  This rate 
is three times the usual definition of (TI)-', or three times the smallest exponent 
measured in an NMR experiment under the same conditions. We find a similar result 
for the Fermi contact interaction described below. However, in section 5 we show 
that relaxation curves depend strongly on q even for isotropic fluctuations for spins 
I > $ .  

4.2. Fermi confact interaction in metals 

The Fermi contact Hamiltonian in metals is given by [7] 

'deFc = (2/3~)6(r)y,y.tr2[I,s, + i(1l.s- + f-St)l  (9) 
where S operators are for electron spin, and I operators are for nuclear spin. To 
determine the effective matrix elements for nuclear spin relaxation, we must sum 
over all electron states: 

In (10). k and U refer to electron orbital and spin states, respectively, and 
a Fermi function. 

1;) Ik) lo). The sum over k states can be performed immediately, giving 

is 

For simple non-magnetic metals we can write the states liku) as product states, 

w,, = ~ . ~ ~ / ~ i I ~ , / ~ ~ 1 2 ( I ( + / ~ . 1 + ) 1 2  + I( - IszI -)I2) 

where 

+ I(ilI+ lM21(- IS-l+)* + l ~ ~ l ~ ~ l ~ ~ 1 2 1 ~ + l ~ + l - ~ l z l  (11) 

WO = ~ h 3 k r [ ~ , ~ n ~ ( ~ ~ ) 1 2 ( ~ ( 0 ) ) 2  
is equivalent to (2TJ-I in the standard definition [7J. in which ( T J '  is the smallest 
exponent for NMR relaxation. Note that this differs from the cylindrical-symmetry 
result in that the I, matrix elements have been retained. The electron spin matrix 
elements are shown explicitly in (11) in terms of the electron spin states I+) and 1 -). 
Evaluating these terms yields 

= ~ ~ o ~ l ~ ~ l ~ z l ~ ~ *  + I(il~xl~W + l(il~ylj)121. (12) 
While the result (12) is general, a specific form for I = 5 can easily be obtained. 
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Comparing the result (12) to the definition (2) above we may define effective field 
strengths for the fermi contact interaction, CY = B = y = (2Wo)'/2, and use these in 
(8) to determine the relaxation rate. This equivalence is possible since the relaxation 
rate (8) contains no cross terms, which are excluded from the transition probabilities 
(12) calculated above. The result is a relaxation rate p = 6W,. This is independent 
of q,  and is identical to the result found previously [SI for q = 0. Note that this is 
specific to I = $, as for isotropic classical fluctuations; elsewhere we demonstrate that 
a T ,  independent of q is not the rule. 

4.3. Other hype$ne interactions in metals 

Because the core polarization interaction [16] depends upon Fermi contact between 
s-core states and the nuclei, this interaction will produce transition rates equivalent 
to ( U ) ,  with a prefactor containing the relevant hyperfine coupling constant. It is 
clear, however, that orbital and dipolar hyperfine couplings in anisotropic metals will 
cause transition rates that depend in a detailed way on the form of the nuclear 
eigenstates. 

For a dipolar interaction, it is easily shown that for a single orbital at .zF of the 
form e (quantised about L), the standard expression [17] for the dipolar interaction 
yields transition rates of the form 

U'.. v 0~ { 2 1 ( i l ~ z 1 ~ V  + I( i l~x l i ) lz  + l(4~y14121. (13) 
The resulting relaxation rate for I = 9 can be shown from.@) to depend on q for this 
specific case as (5q2 + 9)/(3 + q*). We see therefore that the magnetic relaxation 
rate measured in NQR depends in a detailed way on the symmetry. 

Orbital relaxation results from hyperfine couplings of the form I .L = 
[IJ, + $(I+L- + L-L')]. For I = $,the relaxation rate can be determined directly from 
(8) if the mixture of orbitals at eF is known. Unless all m states are equally populated 
(which implies spherical symmetry), the rate will not always be 6W0 = 3/Tl. For low- 
symmetry metals having non-axial EFGS, unfilled states at the Fermi level will likely 
involve fewer orbitals than the cubic and hexagonal cases treated by Obata [17]. For 
instance, if we consider one-dimensional conductors with pure dz2 conduction bands 
[U], all relevant L+,  L-,  and L,matrixelementsvanish, leaving noorbitalcontribution 
to the spin-lattice relaxation. However, a mixture of m = -Cl orbitals will give a non- 
zero contribution due to L+ and L- terms. For instance, the addition of a small d ,  = 
(YA + Y;') orbital gives a non-zero transition rate proportional to I(il(I' + 1-)/21])12 = 
I(ilI&)12, so that the B term in (8) determines the relaxation rate. Note that the crystal 
fieldwill usuallyquenchmstates,sothat matrixelementsofLt and L-cannot betreated 
independently, as were the S+ and S- elements above. 

5. Numerical results for I > # 

It is not possible to find the analytic solution analogous to (8) for spins I > # (even 
utilizing the double-degeneracy for NQR to reduce the spin matrix by one half). 
Instead, we have solved the eigenvalue problem numerically for different values of 
the asymmetry parameter, q ,  using for these calculations the numerical linear algebra 
facilities in Mathematica. We developed a programming package so that this can be 
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Figure 1. Relaxation rates vs. q for spin f ,  in 
units of WO (defined in the text). for Fermi con- 
tact interaction. 

Figure 2. Exponential coefficients for spin P as 
a function of q .  The 'W and the 'W' transitions 
are reprcsented by filled and open symbols. 
respectively. The symbols correspond to those 
with the same shape used for the rates in figure 
1 .  Coefficient scaling is described in the text. 

done for any half-integer spin, keeping all degenerate states. This approach also 
allows us to add a static Zeeman field to the problem, as described in section 6. 

For spins 3, % and 8 magnetic relaxation in NQR is multi-exponential. The problem 
of the relative strength of each mode must therefore be addressed by expanding the 
initial population differences, no, in terms of the eigenmodes of A. Note that three 
representations of the state of the system are available: the I ,  basis: the energy-state 
basis and the basis of eigenmodes of A. We calculate the energy eigenvalues in the 
1; representation and then calculate matrix elements of X,,, to give A in the energy. 
state basis. 

Equilibrium energy-state populations were assumed proportional to the energy 
of each state, in a high temperature approximation. For an inversion of the transition 
between two given pairs of degenerate states, we interchanged the populations of 
the four states involved and subtracted the equilibrium populations to find the initial 
population differences, n,. Thus for a transition between states (Yt,  Y2) and states 
(Y3, Y4) for spin I = 9, the initial vector is no = {SE,  S E ,  - S E ,  -SE,  0, 0} in the 
energy-state basis, where SE = ( E 3  - El).  The coefficients described below thus are 
scaled by the state energies (which depend on q ) .  

Defining C as the matrix whose columns are normalized normal modes of A 
(similar to Narath's [15] notation), no weighted in the normal mode basis is equal to 
C-' .no, where C1 is the inverse of C (equal to its transpose). Each mode decays 
exponentially, so that at time I, mode i has strength (C-l .no), exp(-py), where pi 
is the corresponding eigenvalue of A. The time-dependent energy-state populations, 
n ( f ) ,  are found by multiplying by the matrix of eigenmodes which transforms the 
populations to the energy-state basis: 

ni(r) = E c,(c-' . no), exp(-p,t). 
i 

Finally, the NQR signal is given by subtracting the population differences of the states 
under observation. 
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Figure 3. Relaxation rates vs. 7 for spin 5. in 
units of WO (defined in the text), for Fermi con- 
tact interaction. 

Flgure 4. Exponential coefficients for spin 5 as 
a function of 0. The upper portion of the figure 
shows the 'W and the '&$ transition coef- 
ficients using filled and open symbols. respect- 
ively. The lower portion wntains the '$4 
transition coefficients. The symbols correspond 
to those with the same shape used for the rates 
in figure 3. Coefficient scaling is described in the 
text. 

For q = 0, eigenvalues p, are given by [8] (6W0, 20WJ for I = 2, (6W0, ZOW,, 
42WJ for I = $, and (6W0, 20W0, 42W,, 7211.6) for I = 9, where 2W0 is equal to 1/ 
T I  as usually defined. These NQR eigenvalues correspond to eigenmodes of A that 
have even symmetry under coordinate reversal, whereas the modes observable in NMR 
have odd symmetry. For q # 0, with no Zeeman field, this symmetry is  unchanged, so 
that the number of modes for NQR relaxation is restricted to 2, 3 and 4 for I = B, f 
and 4 respectively. 

We have calculated relaxation exponents and coefficients specifically for the Fermi 
contact relaxation, for which the matrix elements have been determined in section 
4.2. For metals dominated by the contact interaction, exact relaxation curves can be 
obtained from figures 1-6, where relaxation exponents are reported in terms of WO, 
and the coefficient for each exponential is in relative units, scaled by the transition 
frequency as described above. Transitions are defined according to the I ,  states that 
hold for q = 0 (e.g. '2-4' transition); these states change smoothly with q .  We show 
only those transitions that correspond to observable transitions for q = 0. Although 
the exponents change with q in nearly the same way for each spin, they are not 
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Figure 5. Relaxation Tales YI for <pm 1. tn 
units 01 WO (defined In the text). for Ferm mn- 

Figure 6. Exponcntid c o ~ f h ~ ~ e n t r  for \pm L as 
a function of q The upper portion of the figure 

tact interaction. shows the '~ and the 'Pt. transition &er- 
ficients using filled and open symbols, respect- 
ively. The 'H' and the ' 8 4  transition 
coefficients are in the lower portion, shown 
using filled and open symbols, respectively. The 
symbols correspond to those with the same 
shape used in figure 5 for the relaxation rates. 
Coefficient scaling is described in the text. 

identical. However, our results show that for the contact interaction, the smallest 
exponent equals 6W0 for all cases, which includes the I = 1 result already described. 
Other exponents are not constant. (For anisotropic fluctuations, this smallest 
exponent becomes a function of q ,  as well.) 

Therefore, if the relaxation is of the contact type, we demonstrate that the long- 
time tail of the relaxation curve can be fitted to the exponent 6W0, independent of 
the details of the EFG tensor. This result may be useful to characterize disordered 
metals, in which q can be distributed inhomogeneously. However, many of the 6W0 
coefficients are small. Furthermore, the full relaxation curve, with coefficients and 
rates given in figures 1-6, contains information about the relaxation mechanism, Our 
results give the exact zero-field relaxation behaviour for simple metals with aniso- 
tropic EFG'S. 
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Figure 7. Dependence of the relaxation rates 
upon a magnetic field along the quadruplar I 
symmetry axis for spin Z and q = 1. Relaxation 
is via Fermi contact interaction. Rates have units 
of We (defined in the text). 

Figure 8. Energy states of a spin P nucleus in a 
completely antisymmetric ( q  = 1) quadrupolar 
field as a function of an applied magnetic field 
along the z symmetry axis. 

6. Addition of a magnetic field 

With the addition of a static magnetic field, the energy eigenstates become equivalent 
to pure I ,  states in the high field limit. We show that the approach to the high field 
limit is not simple or smooth in the region vo = vL, where vL = y H o / k  is the Larmor 
frequency. 

The magnetic field adds a Zeeman term atz = hv,I, to the Hamiltonian (1). The 
numerical procedure outlined above can be followed if we replace the energy states 
by those of the new Hamiltonian. The Zeeman term destroys the inversion symmetry 
of the Hamiltonian, and as a result all eigenmodes contribute to the observed relax- 
ation curve (e.g. nine exponentials for I = 9  of which five are important in high 
fields). 

In figure 7 are shown exponents calculated for I = 3, for the addition of a Zeeman 
Hamiltonian Se, = hv&, corresponding to a magnetic field along the 2-EFG principal 
axis. These curves were calculated specifically for a contact interaction, as in figures 
1-6, and for a fixed orientation of the EFG'S, with 7 = 1. The energies for this 
situation are shown in figure 8. Prominent peaks and changes in the rates in figure 
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7 can be identified with energy-level anti-crossings. Clearly, in these regions the 
eigenstates become strongly mixed, thereby modifying the relaxation matrix A. Note 
that more than one rate is affected strongly by each level crossing since the eig- 
enmodes of A are mixtures of energy states. The spin-lattice relaxation for all 
transitions thus exhibits this structure, including transitions between higher-energy 
states whose energies change smoothly over the entire range. Changes with field 
becomes smaller as q approaches zero, until finally level anti-crossings will vanish 
for q = 0. For the non-axial case, however, the rates approach the high-field limit 
only above the highest-field anti-crossing, or above a maximum Larmor frequency 
of  approximately vQ,  2vQ,  3v0 and b o ,  for I = I, f ,  4 and B respectively. Thus we 
demonstrate explicitly the magnetic fields for which standard NMR results can be 
utilized in q # 0 quadrupole systems. 
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